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We propose finite lattice effects as a probe of the glueball mass spectrum, and give an analysis 
of the recent  SU(2) Monte  Carlo data of Brower, Nauenberg  and Schalk in terms of a gas of free 
glueballs. For Z 4 lattices with L = 4, 5, 6 fits are made  to ~(m = 1/a~) which indicate a rather 
large effective number  of degrees of f reedom (i.e. statistical degeneracy where a spin J counts as 
2 J +  1) from 5 to 15 states. As  the degeneracy is increased, the central glueball mass  increases 
from m =(1 .3+0 .2)~ /~  at degeneracy 5 to about m =(1.9+0.2)~/K at degeneracy 15, relative 
to the SU(2) string tension ~/K. 

Recent Monte Carlo simulations for lattice quantum chromodynamics have come 
close to experimental confrontation for predicted mass ratios in the continuum 
limit. For SU(2) and SU(3) quantum chromodynamics without quarks, calculations 
of the ratio of the square root of the string tension (x/T) relative to the minimal 
subtracted A ~  parameter  of logarithmic scaling violations [1, 2] have given 

A~/x/-K = (1.3 + 0.2)(0.199) for SU(2),  
(1) 

A~/~/-K = (0.5 + 0.15)(0.289) for SU(3).  

In SU(3), with ~ /~=420MeV,  this is a suitable A parameter  (A~---60 MeV); 
however, the experimental uncertainty for Am does not encourage much more 
streneous computations of this ratio. 

Within quarkless QCD, a more definitive test should be the prediction of the 
lowest mass glueball and its degeneracy (i.e. statistical weight 2J  + 1 for spin J).  
After all, the glueball is a salient non-perturbative effect of QCD, absent in earlier 
quark models. Even a 10% bound on its mass could in principle prove fatal to the 
standard QCD theory. 

* Supported by a grant  from the National Science Foundation.  
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However ,  even for quarkless SU(2) Monte  Carlo, the computat ion of the glueball 
mass has appeared extremely difficult. By measuring the plaquet te-plaquet te  corre- 
lation function at separation L, and assuming 

(Tr (Upl) Tr (Up2))-  <Tr ( U p ) >  2 = CL e -L/¢~B (2) 

Bhanot  and Rebbi  [2] estimated the SU(2) glueball mass m --- 1/a, f  relative to their 
string tension* (K) to be 

rn/4-~ = 3 + 1, (3) 

and Berg [3] by a similar method obtained 

m/4-~ = 3.7 ± 1.2. (4) 

A major  difficulty is the need to have good statistical accuracy so that the small 
exponential  difference in the connected part  can be measured.  

Here  we at tempt  a new approach to measuring the glueball mass or inverse 
correlation length. We look at the finite lattice behavior  of the one-point  function, 

Ep(L, /3)  = ~(Tr(Up))L (5) 

in a periodic box of volume L 4, and bare coupling/3 = 4/g~.  Subsequently, we will 
show that the leading exponential  corrections are due to glueball propagat ion to 
a plaquette 's  periodic image: 

Ep(L,  / 3 ) -  Ep(oo,/3) ~ CL e -L/~ . (6) 

Moreover ,  Brower, Nauenberg  and Schalk [4] have demonstra ted that this 
difference obeys the scaling behavior  dictated by finite lattice scaling theory and 
asymptotic f reedom for L t> 4 and/3 = 4/g2o >t 2.05, 

Ev(L ,  / 3 ) -  Ep(OO , /3) = - ~ e ( ~ )  , (7) 

where the correlation length obeys the scaling law 

,6~r 2 .51/121 
~: = C ( W f l )  e -~3~2/11)t~ . (8) 

We now turn to a model  of these finite scaling effects based on a free gas of glueballs. 

A GLUEBALL GAS 

Formulated in a periodic box of finite temporal  extent, a path integral represents 
the partition function for a finite tempera ture  quantum field theory. The period in 

* Bhanot and Rebbi's estimate for x/~ for SU(2) is 1.2 times bigger, so that their glueball mass i., 
actually 3.6x/~ in terms of the string tension of ref. [1], which we use throughout. 
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time corresponds to the inverse physical temperature.  For a cool system, a dilute 
gas of the lightest particles in the theory will dominate the finite size effects. In 
this way, we can obtain information on the light particle spectrum. 

These ideas can be formalized with the transfer matrix expression for the path 
integral 

Z = ~ d U e  -s(u~ = T r  (f'L°). (9) 
. /  

Here  Lo is the number of discrete time intervals in our lattice and the trace is over 
the quantum mechanical Hilbert space. The hamiltonian/-)  is defined by 

7~=e -a~,  (10) 

where a in the lattice spacing. In a continuous time limit, this establishes the 
connection between a path integral and a canonical formalism. 

Working on a hyper-rectangular lattice of dimension L ,  = (L0, L), we assume 
that the lowest eigenstate of the hamiltonian is an isolated vacuum state with energy 
per unit volume 

~(a, L) = ~-~<0lgl0), (11) 

where V3 is the spatial volume 

3 

V3 = I-[ L , .  (12) 
tz=l  

Using dimensional transmutation, we place all coupling constant dependence in 
the lattice spacing a. We adopt a renormalization scheme whereby the lowest 
glueball mass is held fixed. 

We now assume that the first excited states of the system are single glueballs of 
momentum q and energy E(q). In a finite box the momentum assumes only discrete 
values, however for the leading behavior we can replace sums over q with continuous 
integrals. Putting the vacuum and one glueball state into the trace in eq. (9), we find 

Z = e x p ( - V 4 ~ ( a , L ) ) { I + r V 3 I  d3q states} (13) e-L°aE~q~ + higher 

Here  we define the four-dimensional volume of our lattice 

4 

V , =  1-I L,~. (14) 
g = l  

The factor r represents the degeneracy of the first state; for a spin J state we have 

r = 2 J + l .  (15) 
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The glueball energy above the vacuum, E(q) ,  should become relativistic for small 
lattice spacing; consequently, we assume the form 

2 
E(q )  m + ff-~--+ O ( q 4 ) .  (16) 

z m  

At strong coupling the rest and kinetic masses need not be equal; we assume that 
the coupling is small enough that such deviations are negligible. Inserting the 
spectrum (16) into eq. (13), we obtain 

• ma .3/2 1 
Z = e x p ( - V 4 ~ ( a , L ) ) { l + r V a ( ~ L o )  e-"aL° (1 + O (m-----~o)) } . (17) 

We now must take account of the finite size dependence of the vacuum energy 
density ~. Such corrections should also be exponential in the glueball mass 

~(a,  L)  = g'(a, O0)+O(e-maL') . (18) 

In eq. (17) we found the finite size correction exponential in Lo. A transfer matrix 
in the ith direction will give the contribution exponential in Li. We now consider 
all components of L ,  to be equal, i,e. we work on an L 4 lattice. Each direction 
contributes equally to the finite size effect, and we conclude 

Z(a ,  Z 4 ) = Z ( a ,  o o ) { l + 4 r [ m a L ~ 3 / 2 e - ' n a L ( l + O ( m - ~ ) ) }  
\ 21r / 

(19) 

We now use the connection between Z and the internal energy per plaquette 

1 d 
Ep = log z ,  (20) 

and use the renormalization group equation to convert the derivative with respect 
to fl into a derivative with respect to a : 

d go d 
d-fl = 8y(go) a ~-a' (21) 

where y(go) in the Gel l -Mann-Low function 

d 
a --;-go(a) = r(go) • (22) 

( l a  

Combining these equations gives the result 

21/2r(ma) 5/2 g3 o 
E p ( L ) - E I ' ( ° ~ )  = 48~r3/2L3/2 ,-~-o) e - " ~ L ( l + O ( ~ a L ) )  • (23) 
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To further study the corrections to this formula, we model the glueball gas using 
the partition function for a free scalar field of mass m = 1/a(:  

Z = f dO~ exp ( - ~  ~ {(A.~bn)2 + (ma)2cb z~}) . (24) 

Again from scaling (22), we compute 

3 2 
1 ~ go(ma)" I "2, 

Ep = ~ ~ log Z = 16y(go) ,q~.)L, (25) 

where the finite lattice propagator is 

1 1 
(~bZ.)L=Z'Z 57 2+ - • 2 • (26) 

L q, (ma) 4 Y.~, sm (aqJ2)  

The sum extends over aq, = 2,r l , /L for l~, = 1, 2, • • •, L. This may be recognized 
as simply the infinite lattice propagator for the glueball from x = 0 to all the periodic 
images at x, = aL(nl, n2, n3, nn) by using the identity, 

1 f'~/~ d4q 
(aL) '  ~ : J_~/, (2--~4 ~ e/q'x" " (27) 

The leading scaling contribution to e (L/~) = La(Ep(L) - Up(W)) for large aLm = L /~  
is easily evaluated from the nearest image, 

f d4 q eiaLqo e-aLE(q) d3q 
(27r) 4 m2 + q2o + q - d  ~ (28) (2"n') 3 2E(q) ' 

2 3 and the approximation aE(q) = 1/~+~(a2q. The result for r = 1 and y(go)/go = 
11/24~ -2 is 

eo(L/~) ~- 1~/~111(L/~)512 e -LI~ , (29) 

in accord with our transfer matrix result (23). However, as we will see shortly, this 
approximation is inadequate for the values of L/~  we have in our Monte Carlo 
data. Most importantly, it misses the next nearest images at ~/2L and ~/3L. But 
even for rather large values of L / (  the polynomial factor (L/ ( )  5/2 is an important 
effect. A similar factor of (L/ ( )  3/2 has been neglected in earlier work [2, 4]. 

Fortunately it is not difficult to include exactly all scaling contributions of our 
glueball gas. After several manipulations, we obtain 

4 

e ( X ) = l ~ r ' l x S l o  dAe-X/2x{( ~,=_~e -"2~x/2) - 1 } ,  (30) 

where x = L / ~  = amL and r is the statistical weight. The contribution to the first 
three nearest images at L, x/2L and x/3L is 

oO 

e3(X ) = l r '  ~x  3 f dR e-~/2X[e-a~/2+3 e -xx + 4  e-3Xx/2] . (31) 
Jo 
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Fig. 1. Contr ibut ions  to the scaling funct ion e (x) for x = L/~ f rom a single glueball of mass  m = 1/at. 
Curve (a) is the leading te rm for x ~ 0o, (b) is the nearest  image at distance L, (c) is the first three 

images at L, ~/2L and ~/3L and (d) is the full scaling contr ibut ion.  

In fig. 1, we plot for r = 1 the successive approximations: (a) the asymptotic equation 
(29) for the nearest  image eo(x); (b) the full relativistic contribution of the nearest  
image el(x);  (c) the first three terms e3(x), and (d) the exact scaling contribution. 

We can draw some interesting conclusions. The maximum for x ~-2½ seen in the 
leading asymptotic term is only present  if the first few terms dominate.  Clearly as 
L/~ gets small, contributions of the high mass spectrum (excited glueballs, threshold, 
etc.) come in, and our model  should not be used. (So the physics of the maximum 
in the scaling data is an open question, discussed briefly in the conclusion.) On the 
other hand even for x I> 3, the images at ~/2L and ~/3L are significant. We shall 
use the exact formula for definiteness, but fortunately the images at 2L and beyond 
are negligible for x 1> 3 where we use it. At  2L the corrections are of the same 
order as neglected effects due to glueball scattering and where our free gas should 
not be trusted. 

Our  model  has two parameters ,  the degeneracy r and the mass m measured in 
units of the A parameter .  For convenience we plot the scaling data of ref. [4] on 
a log-log plot so that the two parameters  represent  translating the curve upward 
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for increasing degeneracy,  and leftward for  increasing mass. The pa ramete r  Xo is 
defined with an arbi t rary normal izat ion 

/ -  2 . 5 1 / 1 2 1  

0@1 ) e -(3~r2/11)/3 Xo = L / C o ,  ~:o 1 = 100 /3 . (32) 

W h e n  the first two terms of the renormal iza t ion group function domina te  the 

coupling dependence  of the correla t ion length, xo is propor t iona l  to x. (The value 

x = Xo corresponds  to m -- 1.3x/~ in terms of the string tension [1].) 
There  is a great  deal of ambigui ty  if both  r and m are al lowed to vary simul- 

taneously.  However ,  a small degeneracy,  such as a single J = 0 glueball is incon- 
sistent with the magni tude  of e. If we fix the degeneracy  at r = 5 (e.g. one  J = 2 

state) the glueball mass is quite tightly constra ined to m ~ (1 .3+  0.2)x/~ as shown 

in fig. 2, but  solutions with larger degeneracies  and correspondingly  larger masses 
are allowed. For  example,  fig. 2 also shows that  a degeneracy  of r =  15 with 
m -- (1.9 + 2)x/~ is certaintly consistent with the data. 

These results are not  implausible. As  you allow for  higher degeneracy,  the central  

mass of  the glueballs increases. We  could state the result as the assertion that the 
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Fig. 2. The  finite lattice scaling data for e (x0) for L = 4 ( ' ) ,  5 (x)  and 6 ((D) with the mass  scale mo = 1/a~o 
set equal  to 1.3x/~. The dot ted line is a fit to m o b  = 1.3~/K and degeneracy r = 5, and the solid line 

is m o a  = 1.9x/~ and r = 15. The scatter in the data points reflects their statistical uncertainty.  
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spectrum grows to 15 states as you move to a mass on the order of 1½ times the 
lowest state. Bag models have this property. For example, Donoghue,  Johnson and 
Li find [6] a glueball spectrum with states, m0, 1.3m0, 1.5m0, 1.8m0 with 
degeneracies 6, 6, 11, 21, respectively, in agreement with our trend. Indeed, a 
better fit to our data would be the superposition of a few low mass states plus a 
large number of higher mass states. This tends to give a steeper envelope. However,  
we don' t  feel fits with more parameters are useful. Nonetheless, two features do 
stand out. 

First, rather high degeneracies are favored. Since most glueball models begin 
with nearly degenerate J = 0 and J = 2 states, degeneracies of six or more are 
sensible. Roughly speaking, this reflects the spin states of adding two or more 
vector gluons [ ( 2 J + l ) × ( 2 J + l ) = 9  for two vectors] to form the color singlet 
glueball. 

Second, we get a much lower mass than earlier Monte Carlo estimates [2, 3]. The 
earlier estimates of m - (3-4)x/~ used the two-point function with poorer  statistics. 
In their analysis, power corrections in L / ~ ,  were omitted. On the other hand, our 
estimate is consistent with the strong coupling expansion of Miinster* m = 
(1.8 + 0.8)x/~ for SU(2). Ref. [4] also suggested rn ~ 1.2x/~ for the lowest glueball 
state which is nearly satisfied. Their argument is based on the plausible idea that 
at the onset of precocious scaling (/3 > 2.05) the largest correlation length should 
exceed one lattice spacing (~c > 1). 

If we notice that m/x/-~ increases by as much as a factor of 2 going from SU(2) 
to SU(3) in the strong coupling estimate [6] our lowest mass becomes m 
1 0 0 0 + 5 0 0 M e V  adjusted to SU(3), where 50% error reflects the uncertainty in 
~/~. While the mass looks a little small compared to Regge expectations for a 
J = 2 state at about 21400  MeV, there is no conflict. Perhaps, the lowest glueball 
is a pseudoscalar and by mixing with the 77 is usually sensitive to adding light quarks. 

Finally, we should emphasize that the peak and turn over in the scaling data on 
the left (weak coupling) side in fig. 2 is totally beyond the scope of our glueball 
model. On a lattice with a finite time axis (L0<< L) one expects a deconfinement 
transition into a gluonic phase at high temperature (or weak coupling) [7]. Very 
likely, our peak in e (x) represents an analogous phenomenon.  From the peak, we 
can define a critical "radius" Rc (or inverse effective " tempera ture"  Tc = 1/Re): 

1 
Rc  = aLIp~ak -- (33) 

(0.5 ± 0A)4~" 

Curiously, the finite temperature studies of deconfinement have also given the same 
number, To= (0.5 + 0.1)x/~. A more precise understanding of our scaling function 
near the peak could be of great help in alleviating the degeneracy-mass 
ambiguity [8]. 

* Miinster [6]_estimates by a Pad6 of strong coupling expansions that rn = (1.8±0.8)x/~ for SU(2) 
and m = 3x/K for SU(3). 
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Another  improvement would be to introduce an asymmetric lattice of volume 

L oL  3, which is shorter in the time direction ( L o < L ) .  This would suppress the 
contribution of the spatial images. Since images at or beyond 2L give small 

contributions, asymmetric lattices with L0~<~L should be adequate. Moreover, 
these lattices allow direct contact with the finite temperature studies, so the 

deconfinement transition can be more easily identified and controlled. The asym- 
metry also allows some separation of different spin-parity components, which may 

be very useful in view of the high degeneracy of the glueball spectrum. In this 
respect, the two-point correlation function also has a distinct advantage, so a 
combined approach using both methods may be best. Finally, our determination 

of the glueball mass to string tension ratio m/~/-K cannot be pushed farther without 
a parallel improvement in the errors for x/~. 

In conclusion, our finite lattice image technique provides a useful tool for 

deciphering the glueball spectrum, but better statistics and the accommodation of 
SU(3) and quark effects are necessary to confront the experiments. Still our results 

already favor low masses (from 1.2~/~ to 2.0x/~) and high degeneracies (from 5 

to 15) as a prediction of SU(2) gauge theory. 

One of us (RCB) would like to thank the Harvard theory group for hospitality 
during the duration of this research. 
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